Introduction to MikroTik CHR

MikroTik Cloud Hosted Router (CHR) is a RouterOS version intended to be used as a virtual machine instance.

It runs on x86-64-bit architecture and can be deployed on most hypervisors such as:

  • VMWare, ESXi, Player and Workstation
  • Microsoft Hyper-V
  • Oracle VirtualBox
  • KVM‌
  • And others, like Xen, but I haven’t tested it yet

Some special requeriments apply depending on the subyacent hypervisor.


Network adapters must be vmxnet3 or E1000‌. Just use vmxnet3 to get the most. Disks must be IDE, VMware paravirtual SCSI, LSI Logic SAS or LSI Logic Parallel.


Network adapters must be Network adapter or Legacy Network adapter .Disks IDE or SCSI.


Virtio, E1000 or vmxnet3 NICs. IDE, Sata or Virtio disks.


Networking using E1000 or rtl8193, and disks with IDE, SATA, SCSI or SAS interfaces.


The CHR images have full RouterOS features enabled by default, but they use a different licensing model than other RouterOS versions.

Paid licenses


p1 (perpetual-1), which allows CHR to run indefinitely. It comes with a limit of 1Gbps upload per interface. All the rest of the features provided by CHR are available without restrictions. It can be upgraded p1 to p10 or p-unlimited.


p10 (perpetual-10), which also allows CHR to run indefinitely, with a 10Gbps upload limit per interface. All features are available without restrictions. It can be upgraded to p-unlimited.

p-unlimited (really?)

The p-unlimited (perpetual-unlimited) license level allows CHR to run indefinitely. It is the highest tier license and it has no enforced limitations.

Free licenses (yay!)

There are two ways to use and try CHR free of charge.


The free license level allows CHR to run indefinitely, with a limit of 1Mbps upload per interface. All the rest of the features have no restrictions. This level comes activated by default on all images.

60-day trial

Th p1/p10/pU licenses can be tested with a 60 days trial.

Cool. How can i try it?

The easiest way to spin up a working instance of CHR is using the OVA appliance provided by MikroTik.

Deployment on ESXi

Once downloaded, the OVA can be used to deploy a new instance. I’ll be using ESXi on this example. The OVA comes preconfigured with a single network adapter, but more interfaces can be added on a later stage.

Creating new VM from OVA template
Setting VM name, and uploading OVA file
I’ll use local storage for it
Thin provisioned disks, and a previously configured VM network
Review everything, and deploy

Initial Configuration

After the VM boots, log in via CLI with the default credentials:

  • Username: admin
  • Password: none

CHR comes with a free licence‌ by default, limited to 1Mbps upload limit. This is handy for lab purposes, or low traffic scenarios like stand-alone DHCP servers.

A DHCP client is enabled by default on the single existing ether1 interface. Use any of the following methods to find out the adquired address.

/ip dhcp-client print
/ip address print

Let’s get a trial licence. You will need the credentials for your MikroTik account. If you don’t have a MikroTik account, get one here.

The CHR instance will also need Internet access, so be sure to connect the virtual NIC to a VM network where it can make its way to the outside.

[admin@CHR] > sys license renew password=yourpassword level=

Level ::= p-unlimited | p1 | p10

Once you request a trial license, check the status with

[admin@CHR] > sys lic print
        system-id: 0ywIRMYrtGA
            level: p1
  next-renewal-at: may/05/2019 17:59:59
      deadline-at: jun/04/2019 17:59:59

We’ll install The Dude on the next post, and configure it for some custom monitoring.

Dynamic DNS Server System

After a couple of successful jobs with my client Visual Link Internet LLC, they reached me to set up a service similar to I had already developed another value added services for their customers, like web filtering and firewalling, so I found this project very interesting and fun to do.

Cool, but what is DNS ?

DNS stands for Domain Name Systems. Yep, domains like

It is based on a distributed database that takes some time to update globally. When DNS was first introduced, the database was small and could be easily maintained by hand. As the system grew this task became difficult for any one site to handle, and a new management structure was introduced to spread out the updates among many domain name registrars.

Due to the distributed nature of the DNS systems and its registrars, updates to the global DNS system may take hours to distribute. Thus DNS is only suitable for services that do not change their IP address very often, but not for servers being run with dynamic addresses, which are likely to change their IP address over very short periods of time.

Ok, but my ISP gives dynamic addresses, and I want to access services on my network. What can i do?

Dynamic DNS is a system that addresses the problem of rapid updates. The term is used in two ways, which, while technically similar, have very different purposes and user populations. The first is “standards-based DNS updates”, which uses an extension of the DNS protocol to ask for an update. The second is usually a web-based protocol, normally a single HTTP fetch with username and password which then updates some DNS records (by some unspecified method).

Many providers offer commercial or free Dynamic DNS service for this scenario. The automatic reconfiguration is generally implemented in the user’s router or computer, which runs software to update the DDNS service. The communication between the user’s equipment and the provider is not standardized, although a few standard web-based methods of updating have emerged over time.

Yeah, but those free services are now paid, and some have even disappeared

I know, I know. But this service can be built in-house. Using open source software, there are no fees, and the company domain name can be used to keep things professional.

This is what my client wanted, so I deployed a solution on a that allowed to offer added value services to customers, and provide easy remote access. Using a open source solution based on PHP ( and some custom Bash scripts I was able to deliver a stable system in a short amount of time.

The main techonologies I used are Apache 2 and PHP 7 for the HTTP requests and update system, and BIND9 for the DNS service.

The solution used the standard URL schema of DynDNS, so it is compatible with any device with support for it. Also, because most CPEs of the client’s network were MikroTik based, I also wrote a RouterOS script to call the update.